Show simple item record

dc.contributor.advisorJiménez Leyton, Juan Felipe
dc.contributor.authorOliveros Gómez, Jose Luis
dc.coverage.spatialBogotá
dc.date.accessioned2024-03-26T13:23:43Z
dc.date.available2024-03-26T13:23:43Z
dc.date.issued2024-02-05
dc.identifier.citationOliveros, J. (2024) Empleo de Helicópteros en el Proceso de Extinción de Incendios Forestales. Escuela de Postgrados FACes_CO
dc.identifier.urihttps://hdl.handle.net/20.500.12963/992
dc.description.abstractEl presente artículo de revisión hace énfasis al empleo de los helicópteros en las actividades relacionadas con el proceso de extinción de incendios forestales, misión desarrollada a nivel mundial para la protección y conservación del medio ambiente entre otros fines. A través de una revisión sistemática de la literatura empleando la metodología PRISMA, se identifican las teorías desarrolladas a nivel internacional, para el proceso de prevención, respuesta y mitigación de este fenómeno, mediante el empleo de los helicópteros; los cuales, son medios aéreos que según sus características cuentan con la capacidad de ejecutar diferentes tareas, que no se limitan exclusivamente a realizar descargas de agua y agentes extintores, como acción directa sobre el incendio; su versatilidad permite desarrollar el transporte de personal y carga, la evacuación de personas en estado de vulnerabilidad y la ejecución de misiones de observación aérea que facilitan la toma de decisiones, actividades que dan como resultado un significativo aporte en el engranaje requerido para el control y mitigación de este fenómeno. Durante el desarrollo del presente artículo y mediante el empleo del modelo SHELLO, se identifican los peligros y riesgos inmersos en la ejecución de este tipo de operaciones, a los que se encuentran expuestas tripulaciones y aeronaves, los cuales, junto a la necesidad de operar en horarios extendidos, hacen pertinente contemplar el empleo de aeronaves no tripuladas, para la ejecución de tareas específicas en el proceso de extinción de incendios forestales.es_CO
dc.description.abstractThis review article emphasizes the use of helicopters in activities related to the process of suppression wildfires, a mission developed worldwide for the protection and conservation of the environment among other purposes. Through a systematic review of the literature using the PRISMA methodology, the theories developed internationally are identified for the process of prevention, response and mitigation of this phenomenon, through the use of helicopters; which are aerial means that, according to their characteristics, have the capacity to perform different tasks, which are not limited exclusively to discharging water and extinguishing agents, as a direct action over wildfire; Its versatility allows it to carry out the transportation of personnel and cargo, the evacuation of people in a state of vulnerability and the execution of aerial observation missions that facilitate decision-making, activities that result in a significant contribution to the gear required for control and mitigation of this phenomenon. During the development of this article and through the use of the SHELLO model, the dangers and risks involved in the execution of this type of operations are identified, to which crews and aircraft are exposed, which, together with the need to operate in extended hours make it pertinent to consider the use of unmanned aircraft to carry out specific tasks in the process of suppression wildfires.es_CO
dc.format.extent62
dc.format.mimetypeapplication/pdfes_CO
dc.language.isospaes_CO
dc.titleEmpleo de Helicópteros en el Proceso de Extinción de Incendios Forestaleses_CO
dcterms.referencesAbdel-Basset, M., Mai, M., y Smarandache, F. (2018). An Extension of Neutrosophic AHP-SWOT Analysis for Strategic Planning and Decision-Making. Symmetry, 10(4), 116. https://doi.org/10.3390/sym10040116es_CO
dcterms.referencesAkay, A. E., y Erdoğan, A. (2017). GIS-based multi-criteria decision analysis for forest fire risk mapping. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Iv-4/w4, 25-30. https://doi.org/10.5194/isprs-annals-IV-4-W4-25-2017es_CO
dcterms.referencesAlmond, R. E. A., Grooten, M., y Petersen, T. (2021). REPORTS: Living Planet Report 2020 - Bending the Curve of Biodiversity Loss. Natural Resources and Environment, 35(3), 62. https://www.proquest.com/scholarly-journals/reports-living-planet-report-2020-bending-curve/docview/2478257954/se-2es_CO
dcterms.referencesAlonso, M. (2018). Estrés en aviación. Aeroespacio, 623, 59-63. https://www.modestoalonso.com.ar/asset/trabajos/2018_estres_en_aviacion_aeroespacio_623.pdfes_CO
dcterms.referencesAusonio, E., Bagnerini, P., y Ghio, M. (2021). Drone Swarms in Fire Suppression Activities: A Conceptual Framework. Drones, 5(1), 17. https://doi.org/10.3390/drones5010017es_CO
dcterms.referencesBai, Y., Wang, L., y Yuan, X. (2023). Remote monitoring, personnel extinguishment or helicopter extinguishment? How to control forest fires more effectively. PLoS One, 18(8) https://doi.org/10.1371/journal.pone.0289727es_CO
dcterms.referencesBallew, M. T., Marlon, J. R., Goldberg, M. H., Maibach, E. W., Rosenthal, S. A., Aiken, E., y Leiserowitz, A. (2022). Changing minds about global warming: vicarious experience predicts self-reported opinion change in the USA. Climatic Change, 173(3-4)https://doi.org/10.1007/s10584-022-03397-wes_CO
dcterms.referencesBjånes, A., De La Fuente, R., y Mena, P. (2021). A deep learning ensemble model for wildfire susceptibility mapping. Ecological Informatics, 65, https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.ecoinf.2021.101397es_CO
dcterms.referencesBraun, P., Grafelmann, M., Gill, F., Stolz, H., Hinckeldeyn, J., y Lange, A. (2022). Virtual Reality for Immersive Multi-User Firefighter Training Scenarios. Virtual Reality y Intelligent Hardware, 4(5), https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.vrih.2022.08.006es_CO
dcterms.referencesButler, C. R., M.S., O'Connor, M. B., MS, y Lincoln, J. M., PhD. (2015). Aviation-Related Wildland Firefighter Fatalities - United States, 2000-2013. (). Atlanta: U.S. Center for Disease Control. Retrieved from Military Database; Research Library https://www.proquest.com/reports/aviation-related-wildland-firefighter-fatalities/docview/1704177709/se-2es_CO
dcterms.referencesButler, C., Marsh, S., Domitrovich, J. W., y Helmkamp, J. (2017). Wildland firefighter deaths in the United States: A comparison of existing surveillance systems. Journal of Occupational and Environmental Hygiene, 14(4), 258-270. https://doi.org/10.1080/15459624.2016.1250004es_CO
dcterms.referencesCardil, A., Lorente, M., Boucher, D., Boucher, J., y Gauthier, S. (2019). Factors influencing fire suppression success in the province of Quebec (Canada). Canadian Journal of Forest Research, 49(5), 531-542. https://doi.org/10.1139/cjfr-2018-0272es_CO
dcterms.referencesClifford, R. M., Jung, S., Hoermann, S., Billinghurst, M., y Lindeman, R. W. (2019, March). Creating a stressful decision-making environment for aerial firefighter training in virtual reality. In 2019 IEEE Conference on virtual reality and 3d user interfaces (VR) (pp. 181-189). IEEE. https://doi.org/10.1109/VR.2019.8797889es_CO
dcterms.referencesCorgnati, L., Losso, A., y Perona, G. (2010). SIRIO High Performance Decision Support System For Wildfire Fighting In Alpine Regions: An Integrated System For Risk Forecasting And Monitoring. W I T Press. https://doi.org/10.2495/FIVA100151es_CO
dcterms.referencesCosta, G. (2015). Chapter 24 - Sleep deprivation due to shift work. Handbook of Clinical Neurology, 131, 437-446. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/B978-0-444-62627-1.00023-8es_CO
dcterms.referencesDe, D. K., Olawole, O. C., Joel, E. S., Ikono, U. I., Oyedepo, S. O., Olawole, O. F., Obaseki, O., Oduniyi, I., Omeje, M., Ayoola, A. A., Usikalu, M. R., Omotosho, T. V., Bolujo, E. O., y Ilo, I. P. (2019). Twenty-first century technology of combating wildfire. IOP Conference Series.Earth and Environmental Science, 331(1) https://doi.org/10.1088/1755-1315/331/1/012015es_CO
dcterms.referencesDenis Dilba (2020) Firefighting aircraft and helicopters: The flying fire brigade. Aeroreport 08/2020 https://aeroreport.de/en/aviation/firefighting-aircraft-and-helicopters-the-flying-fire-brigadees_CO
dcterms.referencesDorrington, G. E. (2019, January). Global wildfire protection: A proposal for an international shared aerial wildfire-fighting aircraft fleet and satellite early warning system. In WEC2019: World Engineers Convention 2019 (pp. 1908-1922). Melbourne: Engineers Australia. ISBN number 978-1-925627-25-1es_CO
dcterms.referencesEssen, M., McCaffrey, S., Abrams, J., y Paveglio, T. (2022). Improving wildfire management outcomes: shifting the paradigm of wildfire from simple to complex risk. Journal of Environmental Planning and Management, 1-19. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1080/09640568.2021.2007861es_CO
dcterms.referencesFederal, A. A., y US Department, o. T. (2019). In Aviation Supplies y Academics (ASA) (Ed.), Helicopter Flying Handbook (2023): Faa-H-8083-21b. Aviation Supplies y Academics, Incorporated, Aviation Supplies y Academics, Incorporated. https://www.proquest.com/legacydocview/EBC/5985806?accountid=143348es_CO
dcterms.referencesFischer, A. P., Spies, T. A., Steelman, T. A., Moseley, C., Johnson, B. R., Bailey, J. D., Ager, A. A., Bourgeron, P., Charnley, S., y Collins, B. M. (2016). Wildfire risk as a socioecological pathology. Frontiers in Ecology and the Environment, 14(5), 276-284. https://doi.org/10.1002/fee.1283es_CO
dcterms.referencesFletcher, A., Stewart, S., Heathcote, K., Page, P., y Jillian, D. (2022). Work schedule and seasonal influences on sleep and fatigue in helicopter and fixed-wing aircraft operations in extreme environments. Scientific Reports (Nature Publisher Group), 12(1) https://doi.org/10.1038/s41598-022-08996-2es_CO
dcterms.referencesGarcía Bagán, V. (2023). Estudio de los medios aéreos contra incendios en Catalunya (Bachelor's thesis, Universitat Politècnica de Catalunya). http://hdl.handle.net/2117/383363es_CO
dcterms.referencesGarcía-Heras Hernández, F., Jorge Gutiérrez Arroyo, y Olga Molinero González. (2021). Ansiedad, estrés, y estados de ánimo del Personal Especialista en Extinción de Incendios Forestales (Anxiety, stress, and mood states of wildland firefighters). [Ansiedade, estresse e humor da equipe de especialistas em combate a incêndios florestais.] Retos, 41, 228-236. https://doi.org/10.47197/retos.v0i41.85501es_CO
dcterms.referencesHajduková, G. M., y Kandera, B. (2022). Specific risks of helicopter aerial works and their elimination. University of Zilina. https://doi.org/10.26552/pas.Z.2022.2.23es_CO
dcterms.referencesHansen, R. (2019). Aerial suppression penetrating an axially symmetric and upright buoyant wildfire plume. International Journal of Safety and Security Engineering, 9(4), 287-304. https://doi.org/10.2495/SAFE-V9-N4-287-304es_CO
dcterms.referencesHernández Bautista, S. (2018). Evolución de los medios de extinción en los grandes incendios forestales en España. [Trabajo de Grado, Universidad de Castilla-La Mancha] Repositorio institucional. https://hdl.handle.net/10578/18453es_CO
dcterms.referencesHutchens, R. (2022). The Next Generation of Wildland Firefighting Tools: Using UAV Swarms for Fire Attack. [Tesis de Maestría, NAVAL POSTGRADUATE SCHOOL MONTEREY CA.] https://hdl.handle.net/10945/69656es_CO
dcterms.referencesInstitute of Foresters of Australia and Australian Forest Growers (2020) Submission to the Royal Commission into National Natural Disaster Arrangements, Australian Forestry, 83:3, 107-135, https://doi.org/10.1080/00049158.2020.1823087es_CO
dcterms.referencesJeon, S., Paik, S., Yang, U., Shih, P. C., y Han, K. (2021). The More, the Better? Improving VR Firefighting Training System with Realistic Firefighter Tools as Controllers. Sensors, 21(21), 7193. https://doi.org/10.3390/s21217193es_CO
dcterms.referencesJohnston, D., Onder, Y. K., Rahman, H., y Ulubasoglu, M. (2021). Evaluating Wildfire Exposure: Using Wellbeing Data to Estimate and Value the Impacts of Wildfire. Federal Reserve Bank of St Louis. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.jebo.2021.10.029es_CO
dcterms.referencesKal’avský P. et al., "The Efficiency of Aerial Firefighting in Varying Flying Conditions," 2019 International Conference on Military Technologies (ICMT), Brno, Czech Republic, 2019, pp. 1-5, https://doi.org/10.1109/MILTECHS.2019.8870050es_CO
dcterms.referencesKováčik, L., y Novák, A. (2018). Fire monitoring and fire extinguishing by aerial technology in Slovakia. New Trends in Civil Aviation (pp. 245-248). CRC Press. https://books.google.com.co/books/publisher/content?id=40jpDwAAQBAJ&hl=es&pg=PA245&img=1&zoom=3&ots=2LkFF3W417&sig=ACfU3U0Kd0eYkhkrLuQeQEIrHMjYuggg4A&w=1280es_CO
dcterms.referencesKuti, R., y Papp, B. (2018). Analysis of decision-making skills during disaster management operations. [döntéshozatali készségek vizsgálata a katasztrófavédelmi műveletirányításban] Hadmernok, 13(1), 210-216. https://www.proquest.com/scholarly-journals/analysis-decision-making-skills-during-disaster/docview/2222887960/se-2es_CO
dcterms.referencesLaurenti, S., y del Interior, S. (2017). Chile y la" Tormenta de Fuego". http://localhost:8080/handle/123456789/64es_CO
dcterms.referencesManimaraboopathy, M., Vivin Christopher, H.S., Vignesh, S., y Tamil Selvan, P. (2017). Unmanned fire extinguisher using quadcopter. International Journal on Smart Sensing and Intelligent Systems, 10(5), 471-481. https://doi.org/10.21307/ijssis-2017-264es_CO
dcterms.referencesManual de empleo H-60L FAC-3.101 primera edición 2021 público-reservado. Empleo H60 al interior de la Doctrina FAC Contribuir a los fines del Estado Gestión del riesgo Extinción de incendios. 356-361es_CO
dcterms.referencesMarchi, E., Neri, F., Tesi, E., Fabiano, F., y Brachetti Montorselli, N. (2014). Analysis of helicopter activities in forest fire-fighting. Croatian Journal of Forest Engineering: Journal for Theory and Application of Forestry Engineering, 35(2), 233-243. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.foreco.2006.08.283es_CO
dcterms.referencesMario Pierobon. (2020). Aerial firefighting technology and tactics. Airmedyrescue. Issue 110 (2020) https://www.airmedandrescue.com/latest/long-read/aerial-firefighting-technology-and-tacticses_CO
dcterms.referencesMatta, K. (2020). Use of Aviation Technology in Forest Fire Fighting in Slovakia. In Wood y Fire Safety: Proceedings of the 9th International Conference on Wood y Fire Safety 2020 9 (p. 386-393). Springer International Publishing. https://doi.org/10.1007/978-3-030-41235-7_57es_CO
dcterms.referencesMolina-Terrén, D. M., Xanthopoulos, G., Diakakis, M., Ribeiro, L., Caballero, D., Delogu, G. M., y Cardil, A. (2019). Analysis of forest fire fatalities in southern Europe: Spain, Portugal, Greece and Sardinia (Italy). International journal of wildland fire, 28(2), 85-98. https://doi.org/10.1071/WF18004es_CO
dcterms.referencesMostafa, A., Abdulaziz, E., y Mousa, M. (2021). SWOT analysis applications: An integr T analysis application: An integrative literature review Journal of Global Business Insights, 6(1), 55- 73 https://www.doi.org/10.5038/2640-6489.6.1.1148es_CO
dcterms.referencesNational Wildfire Coordinating Group NWCG, (2023). First Use of a Helicopter for Firefighting – June 26th, 1946 National Wildfire Coordinating Group, First Use of a Helicopter for Firefighting – June 26th, 1946 | NWCGes_CO
dcterms.referencesNongtian Chen, Youchao Sun, Zongpeng Wang, Chong Peng, (2023) Identification of flight accidents causative factors base on SHELLO and improved entropy gray correlation method. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.heliyon.2023.e13534es_CO
dcterms.referencesOrganización de Aviación Civil Internacional. [OACI]. (Reissued 2017) Doc 9966, Manual for the Oversight of Fatigue Management Approaches. https://www.icao.int/safety/fatiguemanagement/FRMS%20Tools/Doc%209966.FRMS.2016%20Edition.en.pdfes_CO
dcterms.referencesOrganización de Aviación Civil Internacional. [OACI]. (2018) Doc 9859, Manual de gestión de la seguridad operacional Núm. de pedido: 9859 ISBN 978-92-9258-655-3 https://www.icao.int/SAM/Documents/2017-SSP-JIAAC-ARG/Doc%209859%20Manual%20SMM%20tercera%20edici%C3%B3n_es.pdf#search=manual%209859es_CO
dcterms.referencesPage, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., mayo-Wilson, E., McDonald, S., . . . Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española De Cardiología (English Edition), 74(9), 790-799. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.rec.2021.07.010es_CO
dcterms.referencesPenney, G., Habibi, D., y Cattani, M. (2019). Firefighter tenability and its influence on wildfire suppression. Fire Safety Journal, 106, 38-51. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.firesaf.2019.03.012es_CO
dcterms.referencesPeña, P. F., Ragab, A. R., Luna, M. A., Ale Isaac, M. S., y Campoy, P. (2022). Wild hopper: A heavy-duty UAV for day and night firefighting operations. Heliyon, 8(6). https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.heliyon.2022.e09588es_CO
dcterms.referencesPereira, M. G., Parente, J., Amraoui, M., Oliveira, A., y Fernandes, P. M. (2020). 3 - The role of weather and climate conditions in extreme wildfires. In F. Tedim, V. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/B978-0-12-815721-3.00003-5es_CO
dcterms.referencesPlana, E.; Font, M.; Serra, M.; Borràs, M.; Vilalta, O. 2016. El fuego y los incendios forestales en el Mediterráneo; la historia de una relación entre bosques y sociedad.Cinco mitos y realidades para saber más. Proyecto eFIREcom. Ediciones CTFC. 36pp https://efirecom.ctfc.cat/docs/revistaefirecom_es.pdfes_CO
dcterms.referencesRadu, V. T., Kristensen, A. S., y Mehmood, S. (2019). Use of Drones for Firefighting Operations. Use of Drones for Firefighting Operations. https://projekter.aau.dk/projekter/files/294663864/Master_Thesis__Vlad_Tiberiu_Radu__RISK4_11.pdfes_CO
dcterms.referencesRestas, A. (2020). Hungarian-Slovakian Cooperation Making Aerial Firefighting More Effective: Error Analysis. Paper presented at the Wood & Fire Safety: Proceedings of the 9th International Conference on Wood & Fire Safety 2020 9, 367-373. https://doi.org/10.1007/978-3-030-41235-7_54es_CO
dcterms.referencesRibeiro, L. M., Viegas, D. X., Almeida, M., McGee, T. K., Pereira, M. G., Parente, J., Xanthopoulos, G., Leone, V., Delogu, G. M., y Hardin, H. (2020). Extreme wildfires and disasters around the world: lessons to be learned. In F. Tedim, V. Leone & T. K. McGee (Eds.), Extreme Wildfire Events and Disasters (pp. 31-51). Elsevier. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/B978-0-12-815721-3.00002-3es_CO
dcterms.referencesRodríguez-Veiga, J., Gómez-Costa, I., Ginzo-Villamayor, M., Casas-Méndez, B., y Sáiz-Díaz, J. L. (2018). Assignment Problems in Wildfire Suppression: Models for Optimization of Aerial Resource Logistics. Forest Science, 64(5), 504-514. https://doi.org/10.1093/forsci/fxy012es_CO
dcterms.referencesRodríguez y Silva, F., y González-Cabán, A. (2016). Contribution of suppression difficulty and lessons learned in forecasting fire suppression operations productivity: A methodological approach. Journal of Forest Economics, 25, 149-159. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.jfe.2016.10.002es_CO
dcterms.referencesRotaru, C., y Todorov, M. (2018). Helicopter flight physics. Flight Physics-Models, Techniques and Technologies, 10, 1948. http://dx.doi.org/10.5772/intechopen.71516es_CO
dcterms.referencesSalgado, D., y Awad, G. (2022). Metodología para el análisis estratégico cuantitativo en proyectos a partir del análisis de riesgos. Estudios Gerenciales, 38(165) https://doi.org/10.18046/j.estger.2022.165.5198es_CO
dcterms.referencesSampieri, R. H. (2018). Metodología de la investigación: las rutas cuantitativa, cualitativa y mixta. McGraw Hill México. ISBN 978-1-4562-6096-5es_CO
dcterms.referencesSavchenkova, V. A., Korshunov, N. A., Perminov, A. V., y Voinash, S. A. (2020). The problem of fire fighting during the hours of darkness. IOP Conference Series.Earth and Environmental Science, 421(6)https://doi.org/10.1088/1755-1315/421/6/062002es_CO
dcterms.referencesSchultz, C.A.; Miller, L.F.; Greiner, S.M.; Kooistra, C. (2021) A Qualitative Study on the US Forest Service’s Risk Management Assistance Efforts to Improve Wildfire Decision-Making. (2021). Forests, 12(3), 344. https://doi.org/10.3390/f12030344es_CO
dcterms.referencesSebbane, Y. B. (2018). Intelligent autonomy of UAVs: advanced missions and future use. CRC Press. https://doi.org/10.1201/b22485es_CO
dcterms.referencesSeyzinski, D. T., Georgiev, I., Panayotov, H. P., y Penchev, S. I. (2019). Effective use of a helicopter with a Bambi bucket firefighting system in Bulgaria. IOP Conference Series.Materials Science and Engineering, 664(1) https://doi.org/10.1088/1757-899X/664/1/012005es_CO
dcterms.referencesShahparvari, S., Bodaghi, B., Roozbeh, I., Mohammadi, M., Soleimani, H., y Chhetri, P. (2021). A cooperative (or coordinated) multi-agency response to enhance the effectiveness of aerial bushfire suppression operations. International Journal of Disaster Risk Reduction, 61, https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.ijdrr.2021.102352es_CO
dcterms.referencesStonesifer, C. S., Calkin, D. E., Thompson, M. P., y Kaiden, J. D. (2014). Developing an Aviation Exposure Index to Inform Risk-Based Fire Management Decisions. Journal of Forestry, 112(6), 581-590. https://www.proquest.com/scholarly-journals/developing-aviation-exposure-index-inform-risk/docview/1625463662/se-2es_CO
dcterms.referencesStonesifer, C. S., Calkin, D. E., Thompson, M. P., y Belval, E. J. (2021). Is This Flight Necessary? The Aviation Use Summary (AUS): A Framework for Strategic, Risk-Informed Aviation Decision Support. Forests, 12(8), 1078. https://doi.org/10.3390/f12081078es_CO
dcterms.referencesSullivan, A., Baker, E., y Kurvits, T. (2022). Spreading like wildfire: The rising threat of extraordinary landscape fires. https://www.unep.org/resources/report/spreading-wildfire-rising-threat-extraordinary-landscape-fireses_CO
dcterms.referencesTedim, F., Leone, V., y Xanthopoulos, G. (2016). A wildfire risk management concept based on a social-ecological approach in the European Union: Fire Smart Territory. International Journal of Disaster Risk Reduction, 18, 138-153. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.ijdrr.2016.06.005es_CO
dcterms.referencesTedim, F., Leone, V., Coughlan, M., Bouillon, C., Xanthopoulos, G., Royé, D., Correia, F. J. M., y Ferreira, C. (2020). 1 - Extreme wildfire events: The definition. In F. Tedim, V. Leone y T. K. McGee (Eds.), Extreme Wildfire Events and Disasters (pp. 3-29). https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/B978-0-12-815721-3.00001-1es_CO
dcterms.referencesTedim, F., Leone, V., McCaffrey, S., McGee, T. K., Coughlan, M., Correia, F. J. M., y Magalhães, C. G. (2020). 5 - Safety enhancement in extreme wildfire events. In F. Tedim, V. Leone y T. K. McGee (Eds.), Extreme Wildfire Events and Disasters (pp. 91-115). https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/B978-0-12-815721-3.00005-9 Tegler, J. (2020). Taking the fight to the night. Aerospace America, 58(8), 26.01 https://aerospaceamerica.aiaa.org/features/taking-the-fight-to-the-night/es_CO
dcterms.referencesTegler, J. (2020). Taking the fight to the night. Aerospace America, 58(8), 26.01 https://aerospaceamerica.aiaa.org/features/taking-the-fight-to-the-night/es_CO
dcterms.referencesTyukavina, A., Potapov, P., Hansen, M. C., Pickens, A. H., Stehman, S. V., Turubanova, S., Parker, D., Zalles, V., Lima, A., y Kommareddy, I. (2022). Global trends of forest loss due to fire from 2001 to 2019. Frontiers in Remote Sensing, 3 https://doi.org/10.3389/frsen.2022.825190es_CO
dcterms.referencesÚbeda, X., y Francos, M. (2018). Incendios forestales, un fenómeno global. Biblio 3w: Revista Bibliográfica De Geografía Y Ciencias Sociales https://www.raco.cat/index.php/Biblio3w/article/view/344019es_CO
dcterms.referencesUnn, C. J., Thompson, M. P., y Calkin, D. E. (2017). A framework for developing safe and effective large-fire response in a new fire management paradigm. Forest Ecology and Management, 404, 184-196. https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.foreco.2017.08.039es_CO
dcterms.referencesUSDA Forest Service Fire and Aviation Management. 2019 Aviation SMS Guide. Available online: 2019 Aviation SMS Guide (usda.gov)es_CO
dcterms.referencesUse, U. A. F. (2020). Effectiveness (AFUE) Report. USFS, Ed. EEUU https://www.fs.usda.gov/sites/default/files/2020-08/08242020_afue_final_report.pdfes_CO
dcterms.referencesVardoulakis, S., Jalaludin, B. B., Morgan, G. G., Hanigan, I. C., y Johnston, F. H. (2020). Bushfire smoke: urgent need for a national health protection strategy. The Medical Journal of Australia, 212(8), 349. https://www.mja.com.au/system/files/issues/212_08/mja250511.pdfes_CO
dcterms.referencesVardoulakis, S., PhD., Marks, G., PhD., y Abramson, M. J., PhD. (2020). Lessons Learned from the Australian Bushfires: Climate Change, Air Pollution, and Public Health. JAMA Internal Medicine, 180(5), 635. https://doi.org/10.1001/jamainternmed.2020.0703es_CO
dcterms.referencesWahyono, Harjoko, A., Dharmawan, A., Adhinata, F. D., Kosala, G., y Kang-Hyun, J. (2022). Real-Time Forest Fire Detection Framework Based on Artificial Intelligence Using Color Probability Model and Motion Feature Analysis. Fire, 5(1), 23. https://doi.org/10.3390/fire5010023es_CO
dcterms.referencesXanthopoulos, G., Delogu, G. M., Leone, V., Correia, F. J. M., y Magalhães, C. G. (2020). 6 - Firefighting approaches and extreme wildfires. In F. Tedim, V. Leone y T. K. McGee (Eds.), Extreme Wildfire Events and Disasters (pp. 117-132). https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/B978-0-12-815721-3.00006-0es_CO
dcterms.referencesZohdi, T. I. (2021). A digital twin framework for machine learning optimization of aerial firefighting and pilot safety. Computer Methods in Applied Mechanics and Engineering, 373, https://doi-org.mindefensa.basesdedatosezproxy.com/10.1016/j.cma.2020.113446es_CO
dc.audiencePersonal relacionado con operaciones de extinción de incendios forestaleses_CO
dc.contributor.directorEstrada Villa, Erika Juliana
dc.identifier.instnameEscuela de Postgrados de la Fuerza Aérea Colombianaes_CO
dc.identifier.reponameRepositorio EPFACes_CO
dc.rights.accessrightsinfo:eu-repo/semantics/openAccesses_CO
dc.subject.keywordsIncendios Forestaleses_CO
dc.subject.keywordsExtinción de Incendioses_CO
dc.subject.keywordsHelicópteroses_CO
dc.subject.keywordsRiesgoses_CO
dc.type.driverinfo:eu-repo/semantics/masterThesises_CO
dc.type.hasversioninfo:eu-repo/semantics/restrictedAccesses_CO
dc.type.spaTesis de maestríaes_CO
datacite.rightshttp://purl.org/coar/access_right/c_abf2es_CO
oaire.resourcetypehttp://purl.org/coar/resource_type/c_bdcces_CO
oaire.versionhttp://purl.org/coar/version/c_ab4af688f83e57aaes_CO
thesis.degree.disciplineMaestría en Seguridad Operacionales_CO
thesis.degree.levelTesis maestríaes_CO


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record