Models of prognosis of time series: proposal for aeronautical logistic support for the super tucano fleet

dc.creatorCalle Rodríguez, María Del Rosario
dc.date2016-10-31
dc.date.accessioned2021-06-17T12:58:29Z
dc.date.available2021-06-17T12:58:29Z
dc.descriptionThe prognosis becomes indispensable in any productive organization, considering that it is the basis of long-term planning in any functional area and therefore a vital tool for management decision-making. The art of forecasting aims to predict the demand for a product or service in such a way that the productive system is efficient and responds to the needs in quantity and opportunity. In the first instance, this article makes a bibliographic tour to describe the context of the forecast, then a documentary revision is carried out in terms of projections of various industrial sectors, and finally the particularity of the forecast is presented in the Colombian Air Force specifically with a proposal for the projection of the demand of the aeronautical logistic support of the fleet of the Super Tucano A-29 team in Combat Air Command No. 2; concluding that the suggested  methodology is not far from the current trends and on the contrary brings together most of them, selecting the best model independently for each component of the fleet, a fact that guarantees a correct inference and that when meeting the established conditions can be extrapolated and standardized for the aeronautical logistic support of the Colombian Air Force, a situation that if presented would generate a high budgetary impact for the Air Force, for the Ministry of Defense and therefore for national public finances, because the costs of logistic support would reflect a decrease from previous periods.eng
dc.descriptionEl pronóstico se hace indispensable en cualquier organización productiva, considerando que se constituye en la base de la planeación a largo plazo en cualquier área funcional, y por tanto, en herramienta vital para la toma de decisiones de la gerencia. El arte de pronosticar pretende predecir la demanda de un producto o servicio de forma tal que el sistema productivo sea eficiente y responda a las necesidades en cantidad, y oportunidad. El presente artículo efectúa en primera instancia un recorrido bibliográfico para describir el contexto del pronóstico, posteriormente se lleva a cabo una revisión documental en cuanto a proyecciones de sectores industriales diversos, y finalmente se presenta la particularidad del pronóstico en la Fuerza Aérea Colombiana específicamente con una propuesta para la proyección de la demanda del soporte logístico aeronáutico de la flota del equipo Súper Tucano A-29 en el Comando Aéreo de Combate No. 2; concluyendo que la metodología sugerida no dista de las tendencias actuales, por el contrario reúne a la mayoría de ellas, seleccionando el mejor modelo de manera independiente para cada componente de la flota, hecho que garantiza una acertada inferencia y que al cumplir las condiciones establecidas puede ser extrapolada y estandarizada para el soporte logístico aeronáutico de la Fuerza Aérea Colombiana, situación que de presentarse generaría un alto impacto presupuestal para la Fuerza Aérea, para el Ministerio de Defensa, y por ende, para las finanzas públicas nacionales, en razón a que los costos de soporte logístico reflejarían una disminución respecto a anteriores vigencias.spa
dc.descriptionA previsão torna-se indispensável em qualquer organização produtiva, considerando que é a base do planejamento de longo prazo em qualquer área funcional e, portanto, uma ferramenta vital para a tomada de decisões gerenciais. A arte da previsão visa predizer a demanda por um produto ou serviço de tal forma que o sistema produtivo seja eficiente e responda às necessidades em quantidade e oportunidade. Em primeiro lugar, este artigo faz um percurso bibliográfico para descrever o contexto da previsão, então uma revisão documental é realizada em termos de projeções de vários setores industriais e, finalmente, a particularidade da previsão é apresentada na Força Aérea Colombiana, especificamente com uma proposta para a projeção da demanda do suporte logístico aeronáutico da frota da equipe Super Tucano A-29 no Comando Aéreo de Combate Nº 2; concluindo que a metodologia sugerida não está longe das tendências atuais e, pelo contrário, consegue ter maioria deles, selecionando o melhor modelo independentemente para cada componente da frota, fato que garante uma inferência certa e que cumprindo as condições estabelecidas poderia ser extrapolada e padronizada para o apoio logístico aeronáutico da Força Aérea Colombiana, situação essa que, se acontecer, geraria um alto impacto orçamentário para a Força Aérea, para o Ministério da Defesa e, portanto, para as finanças públicas nacionais, porque os custos de apoio logístico refletiriam uma diminuição em relação aos períodos anteriorespor
dc.formattext/html
dc.formatapplication/pdf
dc.identifierhttps://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/525
dc.identifier10.18667/cienciaypoderaereo.525
dc.identifier.urihttps://hdl.handle.net/20.500.12963/237
dc.languagespa
dc.publisherEscuela de Postgrados de la Fuerza Aérea Colombianaspa
dc.relationhttps://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/525/690
dc.relationhttps://publicacionesfac.com/index.php/cienciaypoderaereo/article/view/525/711
dc.relation/*ref*/Anderson David R, S. D. (2005). Estadistica para Administracion y Economia . Mexico DF: Thomson.
dc.relation/*ref*/Bernanke, & Boivin. (2003). Monetary Policy in a Data-rich Environment. Journal of Monetary Economics, 525-546. https://doi.org/10.1016/S0304-3932(03)00024-2
dc.relation/*ref*/Bernanke, B., Boivin, J., & Eliazs, P. (2005). The Quarterly Jorunal of Economics, 387-422. https://doi.org/10.1162/qjec.2005.120.1.387
dc.relation/*ref*/Bourgeois, J., & Barnes, J. (1979). Does Advertising Increase Alcohol Consumption? Journal of Advertising Research, 19-29.
dc.relation/*ref*/Bratina, D., & Faganel, A. (2008). Forecasting the Primary Demand for a Beer Brand Using Time Series Analysis. Organizacija,Volume 41, Number 3,. https://doi.org/10.2478/v10051-008-0013-7
dc.relation/*ref*/Brubaker, K., & McCuen, R. (1990). "Level of significance selection in engineering analysis. Journal of Professional Issues in Engineering ASCE Vol. 116 No. 4,, 375-387. https://doi.org/10.1061/(ASCE)1052-3928(1990)116:4(375)
dc.relation/*ref*/Chase Richard B., A. N. (2000). Administracion de Produccion . Santa Fe De Bogota: Mc Graw Hill.
dc.relation/*ref*/Dekimpe, M., & Hannsens, D. (1995). The Persistence of Marketing Effects on Sales. Marketing Science, 1-21. https://doi.org/10.1287/mksc.14.1.1
dc.relation/*ref*/Demirov, E., & Pinardi, N. (2002). Simulation of the Mediterranean Sea circulation from 1979 to 1993: Part I. The interannual variability, 33-34, 23-50. https://doi.org/10.1016/S0924-7963(02)00051-9
dc.relation/*ref*/Dobricic, S. P. (2006). Daily oceanographic analyses by the Mediterranean basin scale assimilation system. Ocean Sci. Discuss., 3, 1977-1998. https://doi.org/10.5194/osd-3-1977-2006
dc.relation/*ref*/Dominick, S. (2009). Microeconomia. Mexico DF: Mc Graw Hill.
dc.relation/*ref*/Fragkakis, N., Lambropoulos, S., & Pantouvakis, J. (2010). A cost estimate method for bridge superstructures using regression analysis and bootstrap. Organization, technology and management in construction. An international journal, 182-190.
dc.relation/*ref*/Franke, G., & Wilcox, G. (1987). Alcoholic Beverage Advertising & Its Impact on Model Selection. Applied Mathematics & Computation 34 (November), 22-30. https://doi.org/10.1080/00913367.1987.10673082
dc.relation/*ref*/Franses, P. (1991). Primary Dem& for Beer in The Netherl&s: An Application of ARMAX Model Specification. Journal of Market research 28, 240-245. https://doi.org/10.1177/002224379102800212
dc.relation/*ref*/Gouviea N. and Fletcher T. (2000). Time series analysis of air pollution and mortality: Effects by cause, age and socioeconomic status. J. Epidemiol. Commun. H., 54, 750-755. https://doi.org/10.1136/jech.54.10.750
dc.relation/*ref*/Gujarati, D. (1999). Essentials of Econometrics. New York: Irwin Mc Graw Hill.
dc.relation/*ref*/Hegazy, T., & Ayed, A. (1998). Neural network model for parametric cost estimation of highway projects. Journal of Construction Engineering and Management, Vol. 124 No.3, 210-218. https://doi.org/10.1061/(ASCE)0733-9364(1998)124:3(210)
dc.relation/*ref*/Herzberg, A., & Frew, L. (2003). Can public policy be influenced? Environmetrics, 14, 1-10. https://doi.org/10.1002/env.556
dc.relation/*ref*/Hoyos Gomez, F. (Mayo de 2014). Presentacion PASLO CACOM-2 2014. Apiay, Meta, Colombia.
dc.relation/*ref*/Keane, M. (1997). Modeling Heterogeneity & State Dependence in Consumer Choice Behaviour. Journal of Bussiness & Economic Statistics, 310-327. https://doi.org/10.1080/07350015.1997.10524709
dc.relation/*ref*/Klemm, O., & Lange, H. (1999). Trends of air pollution in the Fichtelgebrige Mountains, Bavaria. Environ Sci. &Pollut, 193-199. https://doi.org/10.1007/BF02987325
dc.relation/*ref*/Konstantinidis, D., & Maravas, A. (2003). Egnatia Motorway concrete bridges statistics. ASECAP Study and Information Days proceedings of the international conference in Portoroz Slovenia, 92-109.
dc.relation/*ref*/Kyriakidis, J. (2001). Stochastic modeling of atmospheric pollution: a spatial time series framework. Part II: application to monitoring monthly sulfate deposition over Europe. Atmos Environ 35, 2339-2348. https://doi.org/10.1016/S1352-2310(00)00540-9
dc.relation/*ref*/Lanteri, L. (2010). Economia Vol XXXIII, No. 66.
dc.relation/*ref*/Lee, C. k. (2002). Multifractal characteristics in air pollutant concentration time series. Water Air Soil Poll. 135, 389-409. https://doi.org/10.1023/A:1014768632318
dc.relation/*ref*/Leeflang, & Van Dujin, J. (1982). The Use of Regional Data in Marketing Models:The Dem& for Beer in The Netherl&. European Research 10, (January): 29-40.
dc.relation/*ref*/Litterman, R. (1985). Forecasting with Bayesian Vector Autoregressions-five Years of Experience. Minneapolis: Federal Reserve Bank of Minneapolis.
dc.relation/*ref*/Lucas, R. (1976). Econometric Policy Evaluation: a critique. New York: En Brunner K y A Meltzer. https://doi.org/10.1016/S0167-2231(76)80003-6
dc.relation/*ref*/Lucas, y. S. (1979). After Keynesian Macroeconomics. Minneapolis: Federal Reserve Bank of Minneapolis..
dc.relation/*ref*/McKee, D. (1993). Health effects associated with ozone and nitrogen dioxide exposure. . Water Air Soil Poll, 11-35. https://doi.org/10.1007/BF00480811
dc.relation/*ref*/Mobley, K. (1999). Root Cause and failure analysis. United of States of America: Butterworth-Heinemann.
dc.relation/*ref*/Modarres, R., & Khosravi Dehkordi, A. (2005). Daily air pollution time series analysis of Isfahan City. Int. J. Environ. Sci Tech, 259-267. https://doi.org/10.1007/BF03325885
dc.relation/*ref*/Murphy, A. (1988). Skill score based on the mean square error and their relation to mthe correlation coefficient. Monthly weather review, 2417-2424. https://doi.org/10.1175/1520-0493(1988)116<2417:SSBOTM>2.0.CO;2
dc.relation/*ref*/Murphy, A. (1993). What is a good forecast? Weather forecasting, 281-293. https://doi.org/10.1175/1520-0434(1993)008<0281:WIAGFA>2.0.CO;2
dc.relation/*ref*/Pinardi, N. A. (2003). The Mediterranean ocean Forecasting System: First Phase of implementation (1998-2000). https://doi.org/10.5194/angeo-21-3-2003
dc.relation/*ref*/Geophisicae, vol.21, 189-204.
dc.relation/*ref*/Prescott, E. (1977). Should Control Theory be usde for Economic Stabilization. New York: Brunner, K y A Meltzer. https://doi.org/10.1016/0167-2231(77)90017-3
dc.relation/*ref*/Roberts, S. (2003). Combining data from multiple monitors in air pollution mortality time series studies. Atmos. Environ., 37, 3317-3322. https://doi.org/10.1016/S1352-2310(03)00289-9
dc.relation/*ref*/Salcedo, R., Alvim Ferraz, M., Alves, C., & Martins. (1999). Time series analysis of air pollution data. Atmos. Environ., 33, 2361-2372. https://doi.org/10.1016/S1352-2310(99)80001-6
dc.relation/*ref*/Schwartz, J., & Marcus, A. (1990). Mortality and air pollution in London: a time series analysis. Am. J. Epidem., 131, 85-194. https://doi.org/10.1093/oxfordjournals.aje.a115473
dc.relation/*ref*/Seetharaman, P. (1999). Investigating Household State Dependence Effects across categories. Journal Of Market Research, 488-500. https://doi.org/10.1177/002224379903600407
dc.relation/*ref*/Sims, C. (1992). Interpreting the Macroeconomic Time Series Facts: the effects of monetary policy. European Economic Review, 975-1000. https://doi.org/10.1016/0014-2921(92)90041-T
dc.relation/*ref*/Skamris, M., & Flyvbjerg, B. (1997). Inaccuracy of traffic forecasts and cost estimates on large transport projects. Transport Policy, Vol. 4 No. 3, 141-146. https://doi.org/10.1016/S0967-070X(97)00007-3
dc.relation/*ref*/Theil, H. (1971). Principles of Econometrics. Nueva York: J. Wiley.
dc.relation/*ref*/Tonani, M. (2007). A high resolution free surface model on the Mediterranean Sea. Ocean Sci. Discuss. https://doi.org/10.5194/osd-4-213-2007
dc.relation/*ref*/Tonani, M., Pinardi, N., Fratianni, C., & Dobricic, S. (2007). Forecast and analysis assessment through skill scores. Oceans Science Discussions, 189-212. https://doi.org/10.5194/osd-4-189-2007
dc.relation/*ref*/Touloumi G., A. R. (2004). Analysis of health outcome time series data in epidemiological studies. Environmetrics, 101-117. https://doi.org/10.1002/env.623
dc.relation/*ref*/Voigt, K., & Bruggemann, R. (2004). Data analysis of environmental air pollutant monitoring systems in Europe. Environmetrics, 15, 577-596. https://doi.org/10.1002/env.653
dc.sourceCiencia y Poder Aéreo; Vol. 11 No. 1 (2016): Enero - Diciembreeng
dc.sourceCiencia y Poder Aéreo; Vol. 11 Núm. 1 (2016): Enero - Diciembrespa
dc.sourceCiencia y Poder Aéreo; v. 11 n. 1 (2016): Enero - Diciembrepor
dc.source2389-9468
dc.source1909-7050
dc.subjectDemandeng
dc.subjectForecasteng
dc.subjectInventorieseng
dc.subjectLogistic Supporteng
dc.subjectResidual Erroreng
dc.subjectTime Serieseng
dc.subjectdemandaspa
dc.subjecterror residualspa
dc.subjectinventariosspa
dc.subjectpronósticospa
dc.subjectseries de tiempospa
dc.subjectsoporte logístico.spa
dc.subjectapoio logísticopor
dc.subjectdemandapor
dc.subjecterro residualpor
dc.subjectinventáriospor
dc.subjectprevisãopor
dc.subjectsérie temporalpor
dc.titleModels of prognosis of time series: proposal for aeronautical logistic support for the super tucano fleeteng
dc.titleModelos de pronósticos de serie de tiempo: propuesta de soporte logístico aeronáutico para la flota Súper Tucanospa
dc.titleSeries de modelos de previsão do tempo: proposta de suporte logístico aeronáutico para a frota super tucanopor
dc.typeinfo:eu-repo/semantics/article
dc.typeinfo:eu-repo/semantics/publishedVersion
dc.typeArtículo de revisiónspa
dc.typeReview articleeng
dc.typeArtigo de revisãopor

Files