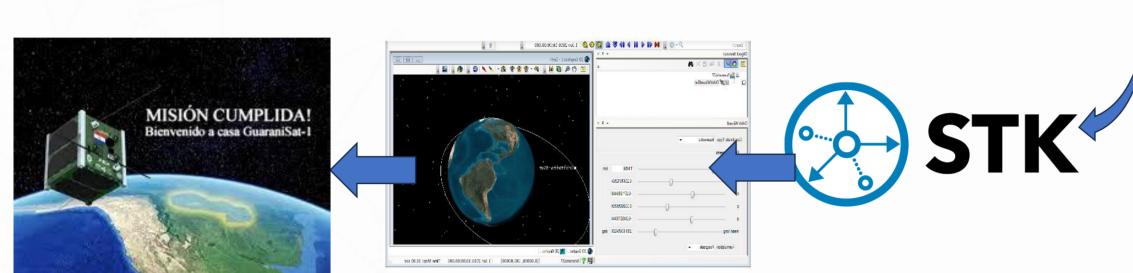
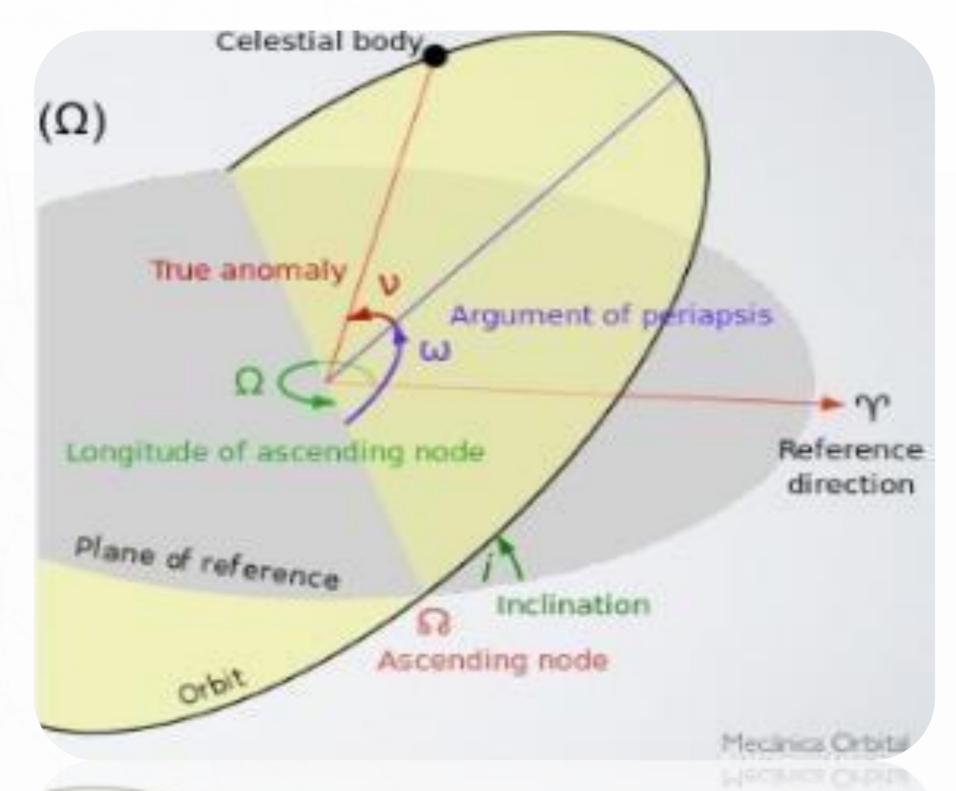

Diseño de orbita satelital en el software STK-AGI.

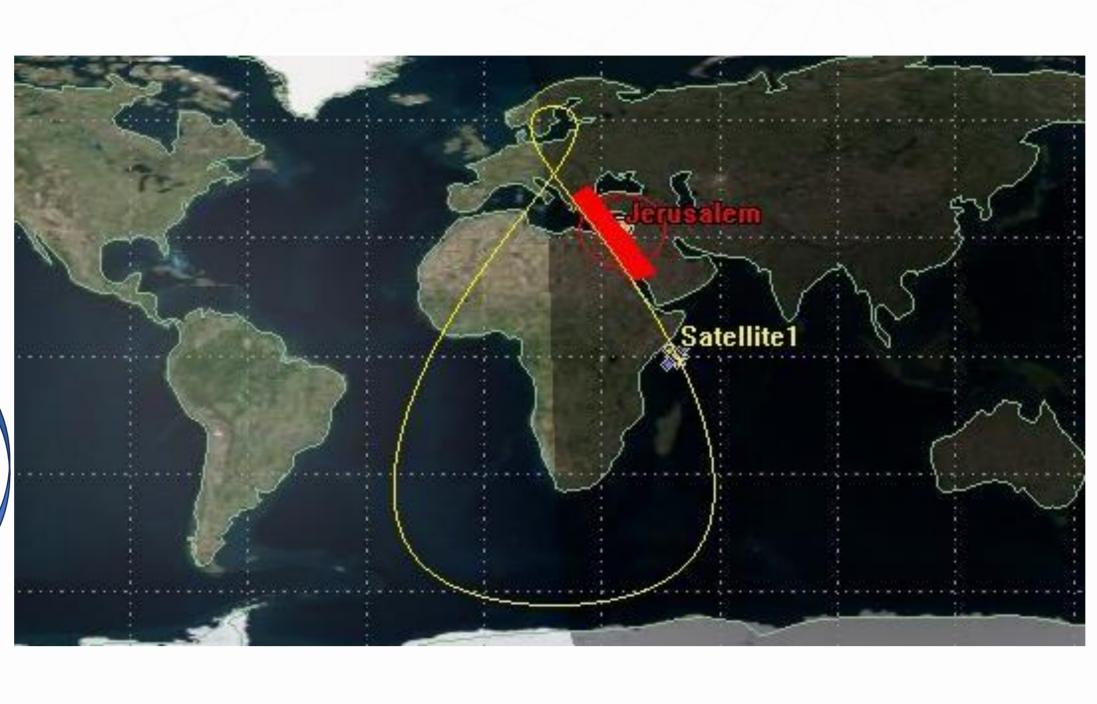

Wilmar Huerfano Triana Na. Didier Aldana Rodríguez Nb.

^aFundación Universitaria Los Libertadores, Bogotá Colombia / Estudiante – ^b Fundación Universitaria Los Libertadores, Bogotá Colombia / Docente

Graphical Abstract

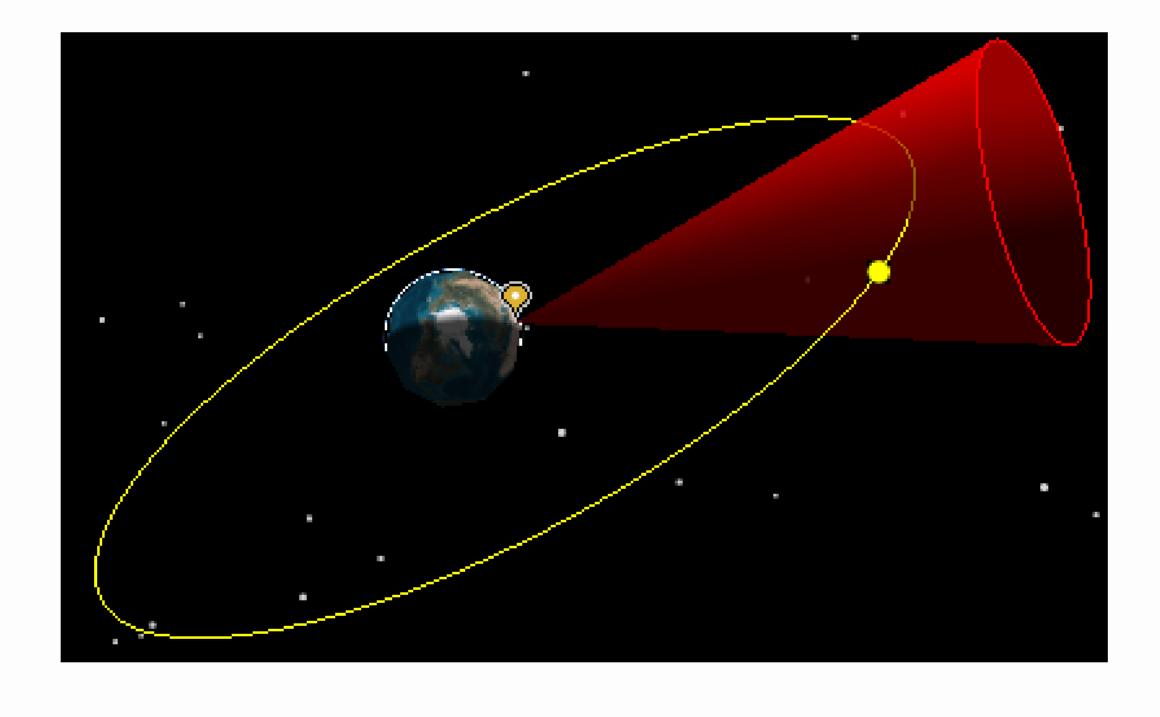

Introducción

la experimentación para conseguir una determinada orbita satelital, lo cual nos permita establecer el paso del satélite por un lugar específico del planeta tierra y en cierta hora especifica.


Se utilizarán conceptos fundamentales de los elementos orbitales y la geometría que compone una órbita, para entender el movimiento y trayectoria que comprenden los satélites al momento de orbitar la tierra, es de mencionar que todo lo establecido en este informe es debidamente aplicado al software STK AGI, permitiendo conocer el comportamiento real de nuestro satélite de acuerdo con los diferentes datos suministrados al momento de diseñar la órbita satelital, partiendo de la visualización de la órbita el programa nos permitirá conocer en qué hora, cuanto tiempo estuvo y que día paso por un punto establecido por el diseñador permitiendo, así cumplir con el objetivo del

Métodos

Para determinar una órbita se debe tener en cuenta elementos satelitales muy importantes, como son los descritos en la siguiente imagen:


Lo primero que se debe hacer es identificar la órbita, en el caso de aplicación se seleccionó la órbita SSO, la cual nos permite pasar por el mismo lugar todos los días a la misma hora; para diseñar la órbita, se debe utilizar el programa STK AGI, lo segundo es establecer el lugar de referencia por donde debe pasar el satélite en este caso es escogió la ciudad de Jerusalén, Israel ubicado en coordenadas geográficas a una longitud de 35.2163 y latitud de 31.769.

Posterior a los pasos anterior se debe crear el satélite, al momento de crear el satélite existen se debe tener encuentra,

Se selecciona una dirección de rotación progresiva para que el satélite orbite se posesione en la dirección del planeta tierra.

El lapso de tiempo programado **STK AGI** fue por un término de 13 días iniciando el 16 de marzo hasta el 29 marzo.

Resultados

A continuación ,se evidencia el reporte que fue generado desde el programa STK AGI, .

Access	Start Time (UTCG)				Stop Time (UTCG)				Duration (sec)
1	16	Ma	2023	18:24:45.334	16	Ma	20	20:23:51.495	7146.160
2	17	Ma	2023	18:20:05.983	17	Ma	20	20:19:55.930	7189.947
3	18	Ma	2023	18:15:27.276	18	Ma	20	20:15:59.642	7232.366
4	19	Ma	2023	18:10:49.205	19	Ma	20	20:12:02.638	7273.432
5	20	Ma	2023	18:06:11.764	20	Ma	20	20:08:04.927	7313.163
6	21	Ma	2023	18:01:34.944	21	Ma	20	20:04:06.512	7351.568
7	22	Ma	2023	17:56:58.738	22	Ma	20	20:00:07.413	7388.675
8	23	Ma	2023	17:52:23.139	23	Ma	20	19:56:07.631	7424.493
9	24	Ma	2023	17:47:48.138	24	Ma	20	19:52:07.174	7459.036
10	25	Ma	2023	17:43:13.728	25	Ma	20	19:48:06.046	7492.317
11	26	Ma	2023	17:38:39.903	26	Ma	20	19:44:04.252	7524.349
12	27	Ma	2023	17:34:06.656	27	Ma	20	19:40:01.797	7555.141
13	28	Ma	2023	17:29:33.981	28	Ma	20	19:35:58.685	7584.703
14	29	Ma	2023	17:25:01.873	29	Ma	20	19:31:54.920	7613.047

Reporte generado STK AGI

Discusión de Resultados

reporte realizado por el programa STK AGI, se puede apreciar que el satélite pasa sobre la ciudad de referencia sobre las 18 horas el primer día que es el 16 de mar y finaliza 29 de mar, pasando sobre las 16 horas en donde se puede apreciar que el satélite tiende a retrasar el tiempo debido a perdidas en la altitud y velocidad, producidas por perturbaciones por arrastre atmosférico el cual hace que el eje semimayor se contraiga con el tiempo. A continuación, se da la visualización de la simulación en el programa y se anexan.

Conclusión

- Respecto a la herramienta STK AGI, se puede decir que es muy útil ya que brinda opciones de diseño aplicables a Tecnología de sistemas satelitales, permitiendo conocer las diferentes características de las orbitas de una manera fácil y muy didáctica.
- De acuerdo con la experimentación y aplicación de lo establecido sobre los elementos orbitales aplicados en el software, es evidente la importancia que tienen las diferentes dimensiones que debe poseer una órbita y las leyes que la rigen, para así poder completar o cumplir con un objetivo específico el cual era hacer pasar el satélite sobre una ciudad de referencia a cierta hora identificando el comportamiento del satélite en el espacio.

Referencias

[1] James R. Wertz y Wiley J. Larson, "Space mission analysis and design", tercera edicion, pag 34-100, 2005.

[2] Peter Fortescue y John Stark, "Spacecraft systems engineering", tercera edicion, pag 79-105, 2001.

[3] Agencia especial Mexicana, "Introducción a la mecánica orbital", 2010.

